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Preface 

 

This document is intended to provide guidance on the construction of sea-level 
scenarios to support impact, vulnerability and adaptation assessments. It summarises 
key material from previous IPCC Working Group (WG) I and WG II assessments on sea 
level change and places some relevant post-AR4 (IPCC Fourth Assessment Report) 
literature, published prior to 30 June 2010, in a context based on those assessments. 
Material included here from the post-AR4 literature has not been subject to the formal 
review and scrutiny of an IPCC assessment process. The TGICA does not have a 
mandate to provide a review or assessment of new literature, and this guidance note 
does not attempt to provide such an assessment. The quantified scenarios remain 
within the full range of uncertainties signalled in the AR4. There is no intent, expressed 
or implied, that this document be treated as a formal update to the AR4. 

Some aspects of this document are exploratory, but are designed to assist those 
compiling impact assessments, where the range of assessed material is insufficient. 
They may also help authors of the Fifth Assessment Report to understand how different 
types of information can be brought together in developing coastal adaptation 
frameworks. 

The views expressed in this document and any aspects of expert judgment that go 
beyond those documented in the Third and Fourth IPCC Assessment Reports are solely 
those of the authors. 

The terminology for likelihood of occurrence/outcome, except where explicitly stated, 
follows that used in AR4.  This approach is fully explained in the AR4 uncertainty 
guidance document available from https://www.ipcc-wg1.unibe.ch/publications/wg1-
ar4/wg1-ar4.html and is summarised below:  

 

Virtually certain   > 99% probability of occurrence 

Very likely   > 90% probability 

Likely    > 66% probability 

About as likely as not  33 to 66% probability 

Unlikely    < 33% probability 

Very unlikely    < 10% probability 

Exceptionally unlikely  < 1% probability  
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Constructing sea-level scenarios for impact and adaptation assessment of 
coastal areas: a guidance document 

 

R.J. Nicholls1, S.E. Hanson1, J.A. Lowe2, R.A. Warrick3, X. Lu4, A.J. Long5 and T.R. 
Carter6, 

Executive Summary 

 

Global-mean sea-level rise is one of the more certain impacts of human-induced global 
warming and it will drive local impacts and adaptation needs around the world’s 
coasts. A key element in assessing these issues is the development of sea-level rise 
scenarios (or plausible futures). This guidance document summarises key relevant 
material concerning sea-level rise scenario development for the 21st Century from 
previous Working Group I and Working Group II assessments of the IPCC.  

The document describes the mechanisms which contribute to sea-level change and a 
methodology for combining available data on these mechanisms to create suitable sea-
level rise scenarios for impact and adaptation assessments. Each component of the sea-
level rise scenario, including the global volume of the ocean, regional effects due to 
differential thermal expansion of the ocean and dynamic effects and vertical land 
movements due to various natural and anthropogenic causes, are reviewed and 
methods to estimate these changes are considered that are consistent with the IPCC 
SRES emission scenarios. Procedures for developing relevant scenarios are illustrated, 
including the minimum requirements, and example sea-level scenarios are also 
included 

In the period between publication of the fourth IPCC assessment (AR4) and before the 
publication of the fifth assessment (AR5) in 2013-2014, this Guidance Document 
considers the different needs of impact assessment, adaptation planning and long-term 
decision-making. This includes consideration of sea-level rise during the 21st Century, 
which may be of high consequence, though of low or unquantifiable probability, that 
exceeds the projections of the quantifiable portions of sea-level budget reported in the 
AR4. In the absence of assessed results for such changes, this is not quantified here, but 
merely discussed in the context of its possible application in sensitivity studies and 
long-term vulnerability assessments. The quantified scenarios that are presented remain 
consistent with the full range of uncertainties signalled in the AR4. 

It is planned for an update of this sea-level scenario guidance to be prepared following 
the release of the AR5. 
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Constructing sea-level scenarios for impact and adaptation assessment of coastal 
areas: a guidance document 

 

1 Introduction 

Global-mean sea-level change is one of the more certain impacts of human-induced 
global warming and one which is expected to continue for centuries due to the time 
scales associated with climate processes and feedbacks even if  greenhouse gas (GHG) 
emissions concentrations were to be stabilised (Meehl et al., 2007). Given the large 
and growing concentration of population and economic activity in the coastal zone, as 
well as the importance of coastal ecosystems, the potential impacts of sea-level change 
have evoked widespread concern for more than two decades (Barth and Titus, 1984; 
Milliman et al., 1989; Warrick et al., 1993).   

Some potential impacts of a change in sea level have already been assessed locally, 
nationally, regionally and globally (e.g. Bijlsma et al., 1996; McLean et al., 2001).  
However, the scope of assessment and the methodologies employed have varied 
significantly (e.g. de la Vega-Leinert and Nicholls, 2001; Nicholls and Mimura, 1998). 
Most of these studies have been based on scenarios: alternative images of the future, 
which help in the assessment of future developments in complex systems that are 
either inherently unpredictable, or have high scientific uncertainties. The reliability of 
scenarios, and difficulties associated with their development and use, have emerged as 
major problems and constraints for impact and adaptation studies.   

To assist scientists, engineers and policy analysts who are assessing impacts of and 
potential responses to sea-level change, this guidance document aims to explain why 
and how sea-level scenarios are developed. It also provides guidance on the use of 
observational and scenario sea-level data within such studies, as well as associated 
caveats. Scenarios are mainly developed for periods between 30 and 100 years into the 
future, as this corresponds to the decade to century scale of most impact studies, but 
brief consideration is also given to post-2100 scenarios. This guidance considers the 
full range of situations from cases of little data and few or no previous studies to those 
where significant data and experience of earlier studies are available. 

The need for sea-level change scenarios as part of impact and adaptation assessments 
is considered, followed by discussion of the strengths and limitations of sea-level 
observational analysis and scenario development.  Most information is drawn from the 
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 
and the discussion on sea-level change which it has stimulated, with some reference 
back to earlier reports such as the Third Assessment Report (TAR), as appropriate. For 
example, in the AR4, the quantified range of projected global mean sea-level rise is 
between 18 and 59 cm by the 2090s, representing the model-based range of sea-level 
change due to thermal expansion, melting of small glaciers or surface melting of the 
main ice sheets (see Table SPM3 in IPCC (2007c)); in the TAR, global-mean sea levels 
were estimated to rise between 9 and 88 cm from 1990 to 2100 (Church et al., 2001). 
This change in range is due to a combination of newer modelling techniques, better 
understanding of processes and better use of observational constraints, but it excludes 
the larger potential contribution of sea-level rise from dynamic ice discharge or 
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collapse of the Greenland and Antarctic ice sheets (Meehl et al., 2007). The AR4 
highlighted the potential for sea level rise to exceed current model-based projections, 
but did not quantify the potential additional contributions as a sufficient basis in the 
literature was lacking (IPCC, 2007a;c). However, the AR4 provided an illustrative 
estimate of the additional sea-level change if observed dynamic discharge processes 
were to increase linearly with temperature. In that case, global average sea levels 
would exceed model-based projections by an additional 0.1 to 0.2m by the 2090s, but 
even higher contributions from this source could not be excluded (IPCC, 2007a p.45; 
2007c p.14). While large sea-level rise scenarios (> 1m rise) resulting from dynamic ice 
loss of the polar ice sheets are generally considered as having lower probability during 
the 21st century, they cannot be ruled out based on our current understanding. It is 
important to remember that the magnitudes of the potential impacts associated with 
high sea-level rise scenarios are of sufficient concern to merit consideration in impact, 
vulnerability and adaptation studies (Nicholls and Cazenave, 2010).     

In addition, other relevant climate change parameters and non-climate scenarios for 
coastal areas considered relevant in the AR4 assessment are briefly introduced 
(Nicholls et al., 2008a; Nicholls et al., 2007). Such scenarios might be important in 
more detailed coastal impact and adaptation assessments. 

2 Potential impacts of a change in relative sea level   

The main physical impacts associated with changes in sea level are summarised in 
Table 1.  

Table 1: The main physical impacts of relative sea-level rise, which require sea-level scenarios for their 
analysis1. 

Physical Impacts 

1. Inundation, flood and storm damage 
a. Surge (sea) 

b. Backwater effect (river) 

2. Long-term wetland loss (and change) 

3. Altered patterns of erosion and accretion (direct and indirect morphological change) 

4. Saltwater Intrusion 
a. Surface Waters 

b. Ground-water 

5. Rising water tables/ impeded drainage 

 

These impacts will vary spatially in line with variations in sea level, which can be 
significant (see Figure 1), reflecting the processes occurring at each location. For 
instance, Nezugaseki, Japan, exhibits a sudden abrupt sea-level change due to a 
natural phenomenon (an earthquake) which would cause significant and unavoidable 
changes; Bangkok, Thailand, shows acceleration in the rate of sea-level rise due to 
increasing human intervention (more rapid subsidence due to groundwater extraction) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Other classifications of the physical impacts of relative sea-level rise are found in the literature, but they are all 
similar and can be mapped onto the scheme shown in Table 1. 
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which can be anticipated; sea level at Helsinki, Finland, appears to be falling due to 
postglacial isostatic uplift of the land surface which may offset the potential impacts of 
any rise in sea level. Figure 1 also illustrates that substantial inter-annual and inter-
decadal variability in sea level occurs. This means that for individual periods of a year 
to several decades, sea-level change can deviate from the long-term observed trend, 
even showing the opposite tendency, making it particularly important that the long-
term underlying trend is identified in impact studies. 

Figure 1:  Selected observed sea-level records over the 20th/early 21st centuries, illustrating different types 
of relative sea-level change (vertical axis, increments of 250 mm). The offsets between records are for 
display purposes. Data from the Permanent Service for Mean Sea Level (http://www.pol.ac.uk/psmsl/).  

The standard impact approach is often described as top-down because it combines 
scenarios downscaled from global climate models to the local scale with a sequence of 
analytical steps that begin with the climate system and move through biophysical 
impacts towards socio-economic assessment (Carter et al., 1994). As part of this 
framework it is necessary to determine relative sea-level change which is composed of 
the sum of global, regional and local trends related to changing oceans and land levels 
(see Section 3.1). These components and their drivers are commonly linked within an 
impact assessment as illustrated in Figure 2.   

It is important to remember that at all stages of a scenario-building process, a diverse 
range of uncertainties are encountered. A large uncertainty surrounds future GHG 
emissions and the possible evolution of their underlying drivers, as reflected in a wide 
range of future emissions pathways in the literature. This uncertainty is further 
compounded in going from pathways to greenhouse gas concentrations in the 
atmosphere; from concentrations to global and regional climate change; from climate 
change to potential and actual impacts; and finally from these to the formulation of 
adaptation and mitigation measures and policies. These uncertainties are discussed 
further in the following sections. 
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Figure 2: Summary of a methodology commonly applied for developing sea-level scenarios for impact 
assessment and adaptation planning. MSL – mean sea level; ESL – extreme sea level. 

3 Understanding relative sea-level change 

3.1 Components of relative sea-level change 

Relative sea level can change over a wide range of timescales from seconds to 
centuries. For instance, significant sea-level variability can occur over years or even 
several decades due to a range of processes and large-scale atmospheric circulation 
changes such as the El Niño-Southern Oscillation (ENSO) phenomenon or the North 
Atlantic Oscillation (NAO), depending on the location (e.g. Basharin, 2004; Lombard 
et al., 2005).  

However, this guidance is concerned with changes in sea level over the next 30-year 
to 100-year period, where relative sea level is the sum of two major components:  

1. Global-mean sea-level change (∆SLG), a result of the change in the global volume of 
the ocean. In the 20th/21st Century, this is expected to be primarily due to: (1) 
thermal expansion of the ocean as it warms, (2) the melting of small glaciers and 
ice caps due to human-induced global warming (Bindoff et al., 2007; Meehl et al., 
2007), and (3) changes in the mass balance of the Greenland and Antarctic ice 
sheets, which is less certain (Shepherd and Wingham, 2007). Estimates of the recent 
rates of sea-level change associated with individual components and their sum 
reported in AR4 are illustrated in Figure 3.  

Modification to global sea level is also possible due to changes in the hydrological 
cycle, including global groundwater depletion, impoundment of water in reservoirs 
and land drainage (e.g. Chao et al., 2008). However, Bindoff et al (2007 p.419) 
conclude that “the land contribution is either small (<0.5mm/yr) or is compensated 
by unaccounted or underestimated contributions” and it is not considered further in 
this guidance. 
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Figure 3: The estimated budget of the components of global mean sea level change (A), their sum (B) 
compared to the observed rate of rise (C). The blue (or upper) bar represents the 90% error range for 
1961 to 2003 and the brown (or lower) bar, the 90% error range for 1993 to 2003. The difference 
between the estimated budget and observed rate of sea-level change (D), illustrates that, whilst 
agreement has improved in the more recent period, there is still a tendency to under predict observed 
sea-level rise. For the sum, the error has been calculated as the square root of the sum of squared errors 
of the contributions. Likewise the errors of the sum and the observed rate have been combined to obtain 
the error for the difference (adapted from Figure 5.21 in Bindoff et al., 2007). 

2. Regional and/or local  spatial variations in sea-level change due to three causes: 

a. Meteo-oceanographic factors (∆SLRM), including differences in the rates of 
oceanic thermal expansion, changes in long-term wind and atmospheric 
pressure, and changes in ocean circulation (such as the Gulf Stream - e.g. Lowe 
and Gregory, 2006) and in the Indian Ocean - Han et al., 2010). These factors 
could be significant, causing large regional departures of up to 50-100% from 
the global average value for the thermal expansion component of sea-level 
change. However, coupled atmosphere-ocean climate models of these effects 
under global warming do not agree where these larger-than-average changes 
will occur (Meehl et al., 2007; Pardaens et al., 2011). At a local scale too, shifts 
in wind (wave) climate can raise sea levels markedly in lagoonal systems 
(Malhadas et al., 2009), which can have a dramatic effect on local coastal 
systems/resources. This regional component of sea-level change has tended not 
to be included in impact assessments to date, although the UKCIP022 scenarios 
did include guidance (Hulme et al., 2002). Some procedures to include it in 
future assessments are included in this guidance. 

b. Changes in the regional gravity field of the Earth (∆SLRG) due to ice melting 
(caused by redistribution of mass away from Greenland, Antarctica as well as 
small glaciers).  This means that global sea-level change caused by the melting 
of an ice sheet will not be evenly distributed as a single “global eustatic” or 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 UK Climate Impacts Programme http://www.ukcip.org.uk/ 
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global-mean value (see Section 5.5.4.4 in Bindoff et al., 2007).  If a polar ice 
sheet melts, then the volume of water in the oceans increases, but at the same 
time, the gravitational pull from the ice sheet on the oceans close to the ice 
sheet falls. The net effect of these processes is that sea-level rise occurs faster in 
areas further away from the source of the melting.  For example, in the case of 
melting Greenland ice, there would be less sea-level rise than the global 
average in the North Atlantic, near to Greenland, progressing to an enhanced 
sea-level rise (compared to the global eustatic value) at low latitudes and in the 
southern oceans (Plag, 2006). Each potential mass source or sink (Greenland ice 
sheet, Antarctic ice sheet, small glaciers, water storage on land) will produce its 
own pattern or “fingerprint” of sea-level change measured at the coast (e.g. 
Mitrovica et al., 2001).  

c. Vertical land movements (uplift and subsidence) (∆SLVLM), due to various natural 
and human-induced geological processes (Christensen et al., 2007, Box 11.5; 
Emery and Aubrey, 1991; Ericson et al., 2006; Peltier, 2004; Syvitski, 2008).  
Vertical land movement occurs in most places. Natural causes include: (1) 
neotectonics, (2) glacio-isostatic adjustment (GIA), and (3) sediment 
compaction/consolidation. These changes can be regional, slow and steady, as 
in the case of GIA, but also localised, large and abrupt, for example as 
associated with earthquakes (e.g., Nezugaseki, Figure 1).  

In addition, human activity has often influenced rates of subsidence in 
susceptible coastal lowlands such as deltas by land reclamation and by 
lowering water tables through water extraction and improved drainage (Nicholls 
et al., 2007). These human-enhanced processes are generally localised to 
Holocene-age deposits and can locally exceed the magnitude of changes 
expected due to climate change through the 21st Century (Bird, 1993; French, 
1997; Long et al., 2006; Nicholls, 1995) (e.g., Bangkok, Figure 1).   

Other processes such as changes in discharge near the mouth of large rivers may also 
influence mean sea level, and this might also be investigated within an impact 
assessment, if relevant. 

The inclusion of regional components of relative sea-level change is important when 
developing scenarios for impact and adaptation assessment, since they provide a link 
between (global) climate change and (regional to local) coastal management strategies 
(Christensen et al., 2007; Nicholls et al., 2007). 

3.2 Combining the components of sea-level change 

Relative sea-level change for a specific location needs to consider the contributions 
from the components at the global, regional and local scales already discussed.  It is 
possible to integrate these for a given site using Equation 1 which also outlines the 
ideal way that each component could be considered:   

VLMRGRMG SLSLSLSLRSL Δ+Δ+Δ+Δ=Δ               Equation 1 

Where,  

∆RSL is the change in relative sea level 
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∆SLG is the change in global mean sea level  

∆SLRM  is the regional variation in sea level from the global mean due to meteo-
oceanographic factors  

∆SLRG is the regional variation in sea level due to changes in the earth’s 
gravitational field 

∆SLVLM is the change in sea level due to vertical land movement 

Using Equation 1, relative sea-level scenarios can be developed according to the data 
available.  

4 Sea-level scenario development 

There are several different methods of determining appropriate sea-level scenarios 
according to the purpose of the assessment and available data. These include using 
observed data (Section 4.1), process-based or statistical models (Sections 0 and 4.3), 
sensitivity analysis (Section 4.4) or synthetic methods, including consideration of 
extreme sea-level rise (Section 4.5). In addition, common technical challenges 
confronting analysts include reconciling global scenarios with local needs (Section 4.6) 
and specifying scenarios over different time horizons (Section 4.7). 

4.1 Extrapolated trends 

Extrapolation of sea-level trends from observed data is useful as a direct method for 
creating relative sea-level scenarios for more localised impact assessments as historic 
records will include changes in water level due to both vertical land movements and 
changes in the level of the sea surface.    

The main source of information for extrapolated trends is tide gauge records, and a 
major global data source is the Permanent Service for Mean Sea Level (PSMSL)3. 
Instrumental records of sea-level change measured with tide gauges are available both 
locally and globally and users should regularly consult the PSMSL and other data 
providers as, in addition to new measurements, important long-term historic 
measurements are sometimes added to the archive (Douglas, 1997; Haigh et al., 2009; 
Woodworth et al., 2009b). Other sources of sea-level data such as the World Ocean 
Circulation Experiment (WOCE)4, the National Oceanographic Data Centre (NODC)5 
and National Tidal Centre of Australia6 may also offer suitable data, while national and 
port and harbour authorities should be consulted for data as well7. However, high 
quality datasets most useful for this method are strongly biased towards the developed 
world, with very limited long-term data in some regions (e.g. small islands, Africa, 
much of the southern oceans). The longest record possible should be used as long-term 
(>50 year) measurements of mean sea level are required to determine the most robust 
trends (Douglas, 1992). While a trend can be extracted from any length of record, 
short-term records (particularly shorter than 36 years, or two lunar nodal cycles) should 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 http://www.pol.ac.uk/psmsl/ 
4 http://www.bodc.ac.uk/projects/international/woce/ 
5 http://www.nodc.noaa.gov/General/sealevel.html 
6 http://www.bom.gov.au/oceanography/projects/ntc/ntc.shtml 
7 Data archaeology is important in sea-level studies (Woodworth, 2006). If you identify historic data that is not in 
one of these archives, this data should be reported to the PSMSL. 



9	
  
	
  

be used with caution and the length of sea-level record which has been analysed 
should be explicitly reported. 

Based on the available sea-level records, a global average mean sea-level rise over the 
20th Century of 0.17 + 0.05 m has been estimated by the IPCC (Bindoff et al., 2007).  
From 1961 to 2003 the average rate was 1.8 + 0.5 mm/yr, while the rate was even 
greater between 1993 and 2003 when satellite measurements show that it increased to 
3.1 + 0.7 mm/yr. It is unclear if this post-1993 trend reflects short-term variability in 
global-mean sea-level rise or indicates a systematic acceleration in the rate of global-
mean sea-level rise: this is a question that further monitoring can help to resolve. 
Satellite observations of sea levels are now collected routinely (e.g. Leuliette et al., 
2004) and some recent work (Church and White, 2006; Holgate and Woodworth, 
2004; Woodworth et al., 2009a) has combined the altimeter record with tide gauges to 
produce gridded sea-level data sets.  These can extend back to the 1950s or earlier but 
have not yet, to our knowledge, been used for sea-level scenario development.    

In areas of rapid subsidence such as delta plains, or subsiding cities, analysis of shorter 
records can still provide a constraint on the rate of subsidence (e.g. Bangkok in Figure 
1) or the Louisiana coastal plain (Penland and Ramsey, 1990). For example, 
groundwater and other sub-surface fluid withdrawals have produced significant 
subsidence in susceptible areas over the 20th Century, greatly exceeding the climate-
induced trends. Such subsidence is most severe in cities built on deltas, many of which 
can be found in Asia as shown by the examples given in Table 2. Grossi and Muir-
Wood (2006) and Syvitski (2008) both found recent subsidence to have been a 
contributory factor to the flooding of New Orleans by Hurricane Katrina in 2005(). In 
the agricultural area of the Fens, UK, oxidation and loss of peat has led to a decline in 
land levels of over 4 metres since 1851 (Waltham, 2000). Appropriate projections of 
the net human-induced subsidence through the 21st Century need to be assessed as 
part of overall scenario development, including socio-economic factors (Nicholls et al., 
2007, see Table 6.1). 

Table 2: Examples of maximum reported human-induced subsidence in coastal cities during the 20th 
Century (adapted from Nicholls, 1995). 

City Maximum 
Subsidence (m) 

Current Status 

Tokyo 5 

Slowed to near natural rates due to reduced groundwater 
extraction.  

Note: in Bangkok more widespread and slower human-induced 
subsidence has spread to areas outside the central city (IGES, 
2007; Phien-wej et al., 2006). Similar trends may apply 
elsewhere. 

Osaka 3 

Tianjin 2 

Shanghai 3 

Bangkok8 2 

Jakarta >1  Ongoing, little management response – sea flooding reported 
in Jakarta in December 2007, Metro Manila discussed by 
Rodolfo and Siringan (2006) and groundwater Metro Manila >0.5  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 See Figure 1 
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extraction(Delinom, 2008; Delinom et al., 2009) 

New Orleans 3 Ongoing, difficult to manage as primarily related to drainage, 
rather than groundwater extraction 

It is also important to remember that impacts are often more related to temporal 
extremes of sea level (storm surges), rather than the annual average value.  Records of 
observed water levels can provide evidence for these extreme levels with return 
periods at specific locations. Long-term studies of extreme sea levels through the 20th 
Century trend (Haigh et al., 2010; WASA Group, 1998; Woodworth and Blackman, 
2004; Zhang et al., 2000) have concluded that there is little evidence of systematic 
departure from the global-mean trend, i.e. any change in extreme levels is the same as 
the mean sea-level change.  However, for the future this situation may change, as 
projections for the 21st Century suggest that it is likely that intense tropical cyclone 
activity will increase (Knutson et al., 2010; Solomon et al., 2007). Looking to the 21st 
Century, the potential for more intense storms is a factor that must be considered in the 
development of sea-level scenarios (see Table 3 and Section 5.2).  

4.2 Model based global-mean sea-level change 

Climate model simulations are commonly undertaken to estimate the magnitude and 
rate of sea-level change resulting from global warming related factors. To address the 
uncertainty associated with climate system dynamics and future GHG emissions, the 
IPCC developed a range of ‘alternative’ futures (scenarios) related to how varying socio 
economic and technological factors may influence future emissions and climate 
change (see Appendix 4). In addition, for each future scenario a range for potential sea 
levels was presented, rather than a single ‘best estimate’, based on an ensemble of 
climate model outputs. Continued development of emissions scenarios is to be 
expected, including scenarios where greenhouse gas emissions are stabilised or peak 
and then decline. Indeed, the current IPCC SRES scenarios are expected to be 
superseded in the IPCC Fifth Assessment (AR5) by a community-led Representative 
Concentration Pathway (RCP) approach (Moss et al., 2010). 

The AR4 provides projections for the quantifiable components of the sea-level budget 
(Figure 3) using a hierarchy of models. These range from coupled Atmosphere-Ocean 
General Circulation Models (AOGCMs) through Earth Systems Models of Intermediate 
Complexity (EMICs) to Simple Climate Models (SCMs) forced by a variety of emissions 
scenarios to model global sea-level change (a discussion of the different models can be 
found in Randall et al. (2007). For each SRES marker scenario, change is represented 
by 5 to 95% ranges based on the spread of AOGCM results, not including uncertainty 
in carbon cycle feedbacks (see Figure 4).  

The ranges are narrower than in the TAR mainly because of improved information 
about some uncertainties in the projected contributions but the midpoint of the each 
range is within 10% of the TAR model average for the same period. However, due to 
limited understanding of some interactions, and because these models do not 
incorporate future changes in dynamic ice discharge from polar ice sheets, neither a 
best estimate nor likelihood value is assigned to the ranges (Meehl et al., 2007). 
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Figure 4 shows that during the 21st Century, thermal expansion is the dominant 
contribution to modelled sea-level change, with glaciers, ice caps and the Greenland 
Ice Sheet also projected to contribute positively. The results also show that although 
the overall range of sea-level rise has been reduced due to improved information on 
uncertainties, under all the SRES scenarios the average rate of sea-level rise is still 
expected to exceed the 1.8mm/yr rate observed between 1961 and 2003. As impact 
assessments often need to estimate impacts of sea-level rise for intermediate periods, 
the values provided in Table 10.7 of the AR4 report (Meehl et al., 2007) can be used to 
generate time series of the projected sea-level rise under various SRES scenarios (e.g. 
Hunter, 2010). Section 4.7 offers a method for constructing intermediate sea-level rise 
scenarios based on Table 10.7 from Meehl et al. (2007) the results of which are 
tabulated in Table 5 of this document. 

Figure 4: Global average sea-level rise projections and uncertainties (5 to 95% ranges) 2090 to 2099 
(relative to 1980 to 1999) for the six SRES marker scenarios. Contributions from the individual 
components are also shown. Part of the present-day ice sheet mass imbalance due to recent ice flow 
acceleration is presumed to persist unchanged. (Source: Figure 10.33 Meehl et al., 2007). The 
uncertainties from the individual sea-level change components and their combination are described in 
Appendix 1 in Meehl et al.,(2007). 

4.3 Model-based regional sea-level change 

To date, most coastal impact and adaptation assessments have ignored regional 
variations in sea-level scenarios, largely due to a lack of technical guidance and access 
to the necessary data in a usable form. Nevertheless, regional and local assessments 
would benefit from considering the components of sea-level change (Section 3) on a 
more individual basis, as the uncertainty for climate-induced sea-level change during 
the 21st century at any site is likely to be larger than the global-mean scenarios suggest.  
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4.3.1 Meteo-oceanographic factors (SLRM)  

Regional variations in atmospheric circulation, ocean circulation and warming rates, 
spatial variations in mass redistribution and the interactions between them can lead to 
significant deviations of regional sea-level change from the globally-averaged trend.  
There are two main methods for estimating regional variations using modelled data.  

4.3.1.1 General Circulation Models 

a. Single model outputs - Complex climate models (AOGCMs) have been used to 
simulate the geographic distribution of sea-level change caused by ocean 
processes (Gregory et al., 2001). Thermal expansion can be calculated from the 
change in three-dimensional ocean temperature structure in the ocean 
components of the models9. Model results for the thermal expansion component 
of sea level derived directly from the AOGCMs, reveal that some regions show a 
rise substantially more than the global average rise (up to twice the global 
average), and others show a sea-level fall for this component (Church et al., 
2001)10. Key features of such regional variations in sea-level rise and some 
possible underlying causes are analysed in Gregory et al. (2001). This lack of 
similarity in spatial patterns between the models means that confidence in 
regional sea-level projections is currently low. 

b. Ensemble model outputs - AR4 has made more and newer results from models 
available (IPCC, 2007b), the combined (or ensemble) outputs of which are 
shown in Figure 5.  As in the TAR results, this combined output shows a sea-
level rise that is smaller than average in the Southern Ocean and larger than 
average in the Arctic. This variation has been attributed to  enhanced freshwater 
input from precipitation and continental runoff, steric changes or wind stress 
change (Landerer et al., 2007) or thermal expansion (Lowe and Gregory, 2006). 

4.3.1.2 Pattern scaling  

The regional pattern of thermal expansion under SRES forcing11 can be approximated 
using a pattern-scaling method similar to that previously applied for other climate 
variables (e.g. Mitchell, 2003; Santer et al., 1990). In applying the pattern-scaling 
method to sea level, "standardised" (or "normalised") patterns of regional thermal 
expansion change, as produced by coupled AOGCMs12, are derived by dividing the 
average spatial pattern of change for a future period (e.g. 2071-2100) by the 
corresponding global-mean value of thermal expansion for the same period. The 
resulting standardised sea-level pattern is thereby expressed per unit of global-mean 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 The melting of mountain glaciers and small icecaps is usually calculated outside of the climate model using 
predictions of atmospheric surface temperature change and a model of glacier sensitivity to warming. The 
contributions of the large Greenland and Antarctic ice sheets are also often treated in a similar way, although 
increasingly (especially for Greenland), these are being represented by complex models that simulate 
thermodynamics and the ice dynamic response. Spatial patterns from coupled AOGCMs do not include vertical land 
movements, but these can be added locally for impact analysis. 
10 For small amounts of icemelt, their contribution to sea level can be considered globally uniform, as a first 
approximation. The spatial patterns will therefore remain dominated by the thermal expansion pattern and 
circulation changes. 
11  It is important to note, however, that pattern scaling has yet to be tested with emissions scenarios which consider 
peak and post-peak reductions in greenhouse gas emissions.  
12 Regional change indicated by AOGCMs also reflect changes in wind stress, ocean circulation and other factors, 
but are largely due to changes in thermal expansion. The patterns are therefore referred to as thermal expansion 
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thermal expansion. The pattern-scaling approach, has been formalised within an 
integrated assessment modelling system called SimCLIM (as described in Appendix 2) 
and used by Walsh et al, (1998), who produced scaled scenarios of regional sea-level 
rise for the Gold Coast of eastern Australia using the outputs from a suite of simulations 
with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) 
general circulation model.  

Figure 5: Variations in local sea-level change (m) from the global average (i.e., positive values indicate 
greater local sea level change than global) during the 21st century with the SRES A1B scenario.  
Variation is due to ocean density and circulation. and is calculated as the difference between averages 
for 2080 to 2099 and 1980 to 1999 as an ensemble mean over 16 AOGCMs. Stippling indicates where 
the variation between the models is less than the ensemble mean. (Source: Figure 10.32 in Meehl et al., 
2007)) 

4.3.2 Changes in the regional gravity field of the Earth (∆SLRG) 

This factor has not been widely considered to date, but could be significant, especially 
under deglaciation of Greenland or Antarctica. A few studies are now starting to 
construct scenarios of future sea level that recognise that changes in the global and 
regional gravity field associated with mass exchange with the ocean will produce non-
uniform patterns of rise that will deviate significantly from a single global value 
(Mitrovica et al., 2001 - their Figure 1; Plag, 2006).  This is particularly important for 
future scenarios with a large ice melt component, but less so for those dominated by 
thermal expansion. . 

4.3.3 Vertical land movements (uplift and subsidence) (∆SLVLM),  

Estimates of vertical land movement are essential to create relative sea-level rise 
scenarios for impact and adaptation assessment, especially in deltas and cities 
susceptible to subsidence (Christensen et al., 2007; Nicholls et al., 2007). Potential 
methods to develop these datasets are well discussed, compared and integrated in 
Bingley et al. (2007) but while newer technologies promise precise measurement in the 
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medium- and long-term, assuming suitable observational networks are established, 
other methods are applied most readily at the present time. 

Observed sea-level records have been used by simply extrapolating the observed 
relative sea-level change trend into the future. This is theoretically debatable as it fails 
to differentiate sea-level rise caused by historical climate change from changes 
attributable to local land movements. By superimposing the extrapolation of observed 
sea-level change trends onto the projections of global warming related sea-level rise 
(e.g. those from climate models), such a procedure would lead to the “double-
counting” of any sea-level rise resulting from large-scale processes associated with 
global warming. Therefore, to estimate the contribution of local land movement to 
relative sea-level change in the future, the climate change related portion of sea-level 
rise needs to be subtracted from the observed local trend.  Various methods have been 
advanced for adjusting this local trend (e.g. Titus and Narayanan, 1995), including the 
SimCLIM sea-level scenario generator (see Appendix 2) which uses pattern-scaling on 
20th century changes to separate the two components (Warrick et al., 2005). Historical 
experience is also unlikely to be a good guide to future changes in tectonically-active 
areas, as most vertical land changes may occur during infrequent earthquake events 
which are not predictable, and can even be in an opposite sense to trends occurring 
between earthquakes (Hamilton and Shennan, 2005; Long and Shennan, 1998; Zong et 
al., 2003). Similarly, naturally subsiding areas, such as deltas, also need to be 
considered (cf. Vafeidis et al., 2008) as subsidence can be significant, e.g. up to 
8mm/yr within the Mississippi delta (Ericson et al., 2006; Penland and Ramsey, 1990; 
Syvitski, 2008).   

Where neither modelled nor observed sea-level records are available, a global dataset 
on the GIA vertical component based on the models of Peltier (2000; 2004) is available 
for download 13 . However, note that all the other natural and human-induced 
geological components of sea level are not included. 

Human-induced subsidence 

Human-induced subsidence can also be important and needs to be captured in sea-
level impact studies (Nicholls and Cazenave, 2010), although as many of the cases in 
Table 2 demonstrate, human-induced subsidence can be alleviated and avoided by 
careful planning of groundwater withdrawal (Nicholls, 1995). Where data on this 
aspect of vertical land movement is lacking, as a sensitivity analysis the interpretation 
of the environmental attitudes embedded in global scenarios might be used to derive 
assumptions about the relative magnitude of human-induced subsidence (e.g. using the 
SRES storylines). Following earlier work (Nicholls, 2004; Nicholls et al., 2008b), the 
following associations might be made: 

1. A1/A2 worlds – human-induced subsidence is more likely; 

2. B1/B2 worlds – human-induced subsidence is less likely. 

This qualitative information then needs to be translated into quantitative scenarios 
where historical experience and/or hydrogeological analysis is required to provide 
realistic limits to the selected scenarios. Based on Table 2, in appropriate locations 
quite large magnitudes of subsidence might be considered in the worst case. For 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13Peltier GIA datasets ; http://www.psmsl.org/train_and_info/geo_signals/gia/peltier/  
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example Wang et al. (1995) considered scenarios of up to 1 m human-induced 
subsidence in Shanghai from 1990 to 2100, while (Nicholls et al., 2008a) considered a 
worst-case human-induced subsidence up to 0.5 m from 2005 to the 2070s in all large 
port cities built on deltas. 

4.4 Sensitivity analysis 

Other approaches for constructing local sea-level scenarios based on SRES-forcing 
make qualitative use of available information. For example, Nicholls et al (2007) noted 
that where the local deviations from the global mean from a set of climate models are 
not available, a +50% factor based on global-mean change can be applied (see also 
Hulme et al., 2002).  

It is possible to employ the maximum/minimum global-mean sea-level rise data set 
available at the IPCC Data Distribution Centre, which is based on the nine cases 
considered in Gregory et al. (2001), or preferably updates based on the IPCC AR4. This 
method gives a global set of scenarios combining global-mean and regional meteo-
oceanographic effects that is globally applicable and this approach has been used in 
several UK coastal impact assessments. Arguably, this approach overstates the 
uncertainty in local sea-level change and pattern scaling may be a superior approach, 
especially as understanding of the patterns improves. 

4.5 Synthetic methods, including consideration of extreme sea-level rise 

Even where no data are available or the alternative ways of generating sea-level 
scenarios are not considered to be applicable, it is still possible to carry out an impact 
or sensitivity analysis to sea-level rise. This may be done by using a nominal value for 
the change in local sea level (e.g. 0.5m, 1m, 1.5m), where a specific time period may 
or may not be defined. The method has been successfully used in a number of studies 
from country to global scales (e.g. Nicholls et al., 2008a; Snoussi et al., 2008).  A range 
of values can be used to develop an appreciation of the potential impacts or determine 
thresholds in the magnitude of impacts, vulnerabilities and adaptation options. A 
synthetic approach also provides an option for addressing the issue of extreme sea-
level rise, which is now considered in more detail. 

As our scientific understanding improves, a common objective is to narrow the 
uncertainty range of expected sea-level rise based on model studies. However, because 
understanding of some important effects driving sea level rise is too limited, the AR4 
did not provide a best estimate or an upper bound for sea-level rise, or assess its 
likelihood (IPCC, 2007a p 45; Solomon et al., 2007). For example, the sea level 
projections do not include uncertainties in climate-carbon cycle feedbacks nor do they 
include the full effects of changes in ice sheet flow. Dynamic processes related to ice 
flow could increase the vulnerability of ice sheets to warming and increase sea-level 
rise, and these dynamic processes were not included in the models used to provide 
quantitative projections (IPCC, 2007c). The AR4 emphasised that additional 
contributions to sea-level rise from polar ice sheets on century time scales could lead 
to larger increases than the numerical sea-level rise estimates presented in their Table 
10.7 (Meehl et al., 2007). 
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However, the potential for rises in sea level in excess of 1 m is of particular relevance 
to impact, vulnerability and adaptation assessments as it allows analysts to consider 
risk in the context of the lifetime and nature of assets that would be affected by such 
large sea-level rise scenarios (see e,g, Tol et al., 2006) 14. This guidance document does 
not attempt to quantify this extreme range, and for its application analysts are 
encouraged to seek advice from global sea-level and ice sheet experts, complemented 
with new information being assessed by the IPCC, as it appears, including the IPCC 
AR5 (due to be approved in 2013/2014). A published example of an extreme scenario 
(called the H++ scenario) for the UK coast is provided by Lowe et al. (2009) and is 
described in Appendix A3.6. A similar synthetic case is also included in the scenarios 
offered as examples in Table 5 below. 

4.6 Global to local scenario integration 

Computer models have been developed to facilitate the development of relative sea-
level change scenarios integrating global, regional and local contributions to sea-level 
change.  SimCLIM (Warrick, 2009) is such an example and a full description of how it 
facilitates site-specific sea-level change scenarios can be found in Appendix 2.  

Figure 6 shows multiple outputs of SimCLIM for two grid box locations representing 
zones of present-day relative sea-level rise (Buenos Aires) and sea-level fall 
(Stockholm). Note the spread in projections based on a range of assumptions 
concerning global sea-level response to climate and different SRES emissions scenarios. 
With the projected increase in the eustatic rate of sea-level rise during the 21st century, 
by 2100 many regions currently experiencing relative sea-level fall owing to GIA could 
instead have a rising relative sea level (for example, Stockholm as shown in the right-
hand panel in Figure 6 and as discussed by Johansson et al., 2004).  

Ideally, given the large uncertainty about the future global-mean and other 
components of sea-level rise, adaptation and planning assessments need to assess a 
range of scenarios to define the relevant response surface for sea-level rise (and other 
change scenarios, as appropriate), and test the robustness of different adaptation 
measures. However, it is impractical to consider the full range, and a sub-set reflecting 
the range, as in Figure 6, is should be selected.  There are two approaches to such an 
analysis: 

1. Drive the analysis with individual downscaled global-mean scenarios (taking 
account of global, regional and local changes), so that results for the selected 
scenario will have immediate meaning; 

2. Drive the analysis with a suite of scenarios that encompasses the range of the 
downscaled global-mean scenarios. This is a guided sensitivity analysis that will 
provide a response surface, which can then be used for interpolation of any 
intermediate scenario. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Remember that here the main focus is on changes in the 21st Century– up to a 100 year timescale 
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Figure 6: Six projections of sea-level change for Buenos Aires (left) and Stockholm (right) for the period 
1990-2100 generated using the SimCLIM system (see Appendix 2 for details).  Also plotted are the 
observed changes in sea-level as derived from the respective local tide gauge records, referenced to 
1990 with a 10-year filter applied (grey lines in the figure).  The observed local trends in relative sea-
level change are +1.57 mm/yr and -3.94 mm/yr for Buenos Aires and Stockholm, respectively, and are 
included in the future projections. The six projections are selected to span a range of uncertainty in 
future GHG emissions, the climate sensitivity, spatial differences in rates of change (primarily from 
oceanic thermal expansion, as projected by AOGCMs) and ice sheet dynamics, as consistent with IPCC 
AR4. 

Superficially these approaches are very similar, but the second approach places less 
emphasis on scenario downscaling as the first analytical step, and leaves some of the 
detailed scenario questions for later in the analysis. This can be helpful as the scenario 
development and interpretation is more integrated into the overall analysis rather than 
being “front-ended” as in the former case. This is particularly suitable if only sea-level 
rise is being considered. However, as the number of scenario types being considered 
increases, so the combination of scenarios increases and linking the downscaled 
scenarios in a more ‘traditional’ impact assessment may become more appropriate.  

4.7 Intermediate time periods 

In order to decide when and where to respond to the implications of sea-level change, 
it is useful for impact and adaptation assessments to consider intermediate time periods 
(see example Appendix A3.6). This information is not available directly from AR4 but it 
is possible, using a variety of methods, to create interpolated sea level curves.  It must 
be remembered however that the values created are generally based on a statistical, 
rather than physics, approach and can therefore only be used for guidance.  

One simple interpretation for global-mean sea level can be achieved using Equation 2, 
below; assuming sea-level rise in 1990 is zero. This form of curve was chosen because 
it has the same number of tuneable parameters as the constraints to which the curve 
can be fitted; namely the estimated rate and amount of sea-level rise at the end of the 
21st Century and, for the limited number of cases for which actual physical model-
derived time series were available, a quadratic was found to give a good fit.  

∆SLG =  a1t+a2t
2      Equation 2 

Where,  
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∆SLG = change in global sea level (since 1990) 

t   = number of years since 1990 

a1 = trend in sea level change 

a2 = change in the rate of the sea-level trend 

Figure 7 shows the sea-level curves created by Equation 2 for the range of scenarios 
reported in AR4 (estimated upper and lower limits are based on the 5th and 95th 
percentile reported).  

Figure 7: Interpolations of the range of global sea-level rise over the 21st Century using Equation 2 based 
on estimates reported in IPCC AR4 (Table 10.7 in Meehl et al., (2007) for 6 IPCC SRES scenarios. The 
upper and lower limits refer to the 5th and 95th percentiles of the sea-level distribution; which is assumed 
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to be Gaussian. Note: other influences on relative sea levels (e.g. subsidence) need to be added to these 
interpolations for regional or local assessments.   

5 Scenario choice and availability for impact and adaptation assessment 

The scenario development discussed in Section 4 is largely quantitative, but in many 
cases a high precision may neither be required nor appropriate given the large range of 
potential sea-level rise under alternative future scenarios. As an example, when looking 
at flood risk management, extreme water levels are typically required to 10 cm 
accuracy (Araujo and Pugh, 2008). For a local study, if resources are available, the 
impact assessment could consist of local socio-economic scenarios and 
downscaled/processed sea-level data combined with a surge model and vertical land 
movement observations.  However, it is also important to remember that as impact 
assessments are commonly based on elevation data, there is no requirement for a sea-
level scenario with 10 cm accuracy when the topographical data set generally has a 
vertical precision of 30 cm at the very best15.  

Table 3: Summary table of sea-level components showing how they can be combined for impact and 
adaptation assessment. Requirements for different levels of assessment are indicated.  

Sea-level component 
Level of assessment 

Detailed Intermediate Minimum 

Socio-economic scenario 
Downscaled SRES 
scenario16 or other relevant 
local scenario 

Global SRES (or baseline17)  

Global sea-level 
change (including ice 
melt) 

SL
G 

 
IPCC AR4 (and extreme scenario if 
applicable for impact studies) 

 

Regional sea-level 
change 

SL
RM 

Meteo-oceanographic 
driven deviations from 
individual models in AR4 
for appropriate scenario 

Scaled up local deviations from 
A1B diagram in AR4 (Figure 
10.32); use pattern scaling 
equation or software e.g. SimCLIM 

Use ± 50%  

(based on 
Hulme et al  
2002) 

SL
RG 

Correction for gravity 
effects 

Scale predictions according to 
Mitrovica et al. (2001, Figure 1) 

Assume 
globally 
uniform eustatic 
sea-level rise 

Natural vertical land 
movement 

LM
N 

Detailed local 
observations e.g. GPS, 
long time series local tide 
gauge or relevant 
geological data18 

Regional patterns of land motions 
inferred from geological data / GIA 
model estimates 

Assume no 
change   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 30 cm accuracy can be accomplished using LIDAR (Light Detection And Ranging) for detailed case studies, but for 
national and larger-scale studies the accuracy will be lower. 
16 Downscaled population and GDP data available with guidance from:  
http://ciesin.columbia.edu/datasets/downscaled/  
17 If baseline (present-day) conditions are used, this needs to be made explicit 
18 Consider a range of values if methods do not agree (see Section 4.3.3) 
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Human induced 
vertical land 
movement 

LM
H
 

Analysis of subsidence 
potential and relevant 
human actions19 

Assume arbitrary changes based on 
geological setting 

Assume no 
change 

Changes in storm surge 

Detailed local modelling 
using regional models or 
statistical downscaling 
driven by climate models 

Run sensitivity study with no 
change in storminess component, 
then range of increase over 50/100 
year period20 

Assume no 
change 

Table 3 summarises how sea-level scenarios might be developed with different levels 
of data availability including the minimum requirements for an impact assessment.  
Using as little information as: (i) a hard copy of IPCC reports for global socio-economic 
scenarios, (ii) global sea-level rise projections ±50% to account for regional variations, 
(iii) an assumption of no change in vertical land movement, and (iv) integrating these 
via Equation 2, the resulting sea-level change scenarios will still produce impact 
assessments which can inform adaptation requirements. As more research on sea level 
is conducted, so future scenarios can be improved, for example adding factors such as 
uplift/subsidence and/or improved meteo-oceanographic drivers.   

However, impact assessment need not be delayed until such information is available.  
Rather, sea-level rise scenarios can evolve with the impact and adaptation assessments 
from a first scoping of the problem and its issues towards a more detailed 
understanding of impacts and ultimately to adaptation measures. This stresses that 
adaptation assessment for sea-level change can be considered a process rather than 
expecting a single assessment to address all issues to conclusion. Some examples of 
sea-level rise scenario development under different levels of data availability are 
illustrated in Table 4 and explained further in Appendix 3.  Users of this guidance need 
to make judgements on the appropriate level of precision that they require.   

Table 4: Examples of sea-level scenarios used for impact analysis (see Appendix 3 for details). 

Reference Level of assessment Area of interest 

(Katsman et al., 2008) Detailed Northeast Atlantic Ocean 

(Snoussi et al., 2008) Minimum -  synthetic Country level (Morocco) 

(Dennis et al., 1995) Minimum Country level (Senegal) 

(Nicholls et al., 2008a) Intermediate Global 

(DEFRA, 2006) Intermediate Local-regional (England/Wales) 

(Lowe et al., 2009) Detailed Country level (UK) 

The choice of sea-level scenarios will also vary with the focus and objectives of the 
assessment being carried out (see Figure 8).  Impact assessments should aim to identify 
the magnitude of any thresholds for impacts and adaptation options across the full 
range of projected sea levels (e.g. from the AR4) as well as through sensitivity studies 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19For example, ground water extraction. Note that human-induced subsidence can increase or decrease according to 
the management option selected 
20 Based on the estimates of Lowe and Gregory (2005) for the UK in the future and additional knowledge of previous 
surge events: suggested range  ± 33%. 
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using extreme scenarios, where applicable; the extreme ranges being based on 
available knowledge (global and local) with clear reasoning provided.  

For adaptation assessments the selection of sea-level scenarios should be informed by 
the lifetime and nature of assets at risk, planning horizons, risk aversion of affected 
communities and decision-makers, and the ability to up-scale or change adaptation 
responses over time. In practice, many adaptation assessments or strategies with 
limited time horizons or limited lifetimes of assets at risk may tend to focus on the 
range reported in the AR4. However, there may be interest in the potential adaptation 
options under an extreme range, and their consistency to the adaptation options 
identified for the AR4 range. For instance, if the preferred or feasible adaptation option 
changed from protect to retreat if the rise in sea level increased above the model-based 
AR4 range, this would raise difficult questions concerning the preferred near-term 
adaptation choices given the risk of locking-in large-scale infrastructure such as human 
settlements in the coastal zone.  

Figure 8: Possible relationship between sea-level scenarios, impact and adaptation. 

Engineered adaptation responses, if selected within the adaptation assessment, will 
often be limited by technological or budgetary constraints to an ultimate single 
“design” scenario.  As such engineered adaptation can be a costly exercise, it is 
assumed that the design scenario will be carefully evaluated and the uncertainty across 
the full range of scenarios, along with the potential consequences and remedial 
adaptation options if sea level were to exceed the chosen design scenario, will again 
be a key consideration. This may lead to a planned sequence of adaptation measures 
such as those being developed in the Thames Estuary 2100 Project for London (see 
Chapter 7 in Lowe et al., 2009).  

5.1 Range of Scenarios 

While uncertainties remain large, it is prudent to consider a wide range of scenarios so 
that the full range of uncertainties and risks can be explored, and to avoid estimates of 
sea-level change impacts being rendered invalid every time new sea-level projections 
become available.  It is also advisable to use the most detailed data available and 
appropriate for the scale of the impact analysis.  As a basis for adaptation planning, the 
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minimum requirement is to use the full range reported in the AR4 which represents the 
best available projections for the currently quantifiable parts of the sea-level budget for 
the 21st century.  The consideration of a range of scenarios, including an extreme 
scenario, allows uncertainty, sensitivity, risks and long term adaptation planning to be 
included in the analysis, particularly where assets of high economic, social or 
environmental value and long lifetimes are concerned, and where near-term 
adaptation choice could constrain the ability to up-scale adaptation responses at a later 
stage. However, it is important to note that the literature underpinning any values can 
be expected to alter as scientific understanding develops. Constraining future sea-level 
change projections has been identified as a major scientific priority in a recent IPCC 
Workshop21, for the Sea-Level Change chapter of the approved  outline of the IPCC 
Working Group I AR5, and by Alley et al. (2008).  

Based on this, Table 5 provides the range of global-mean sea-level scenarios calculated 
from the interpolation described in Section 4.7 and other information discussed in this 
guidance.  

5.2 Short term variations, including extreme events 

Short term variations (<30 years) are not considered in depth in this guidance, although 
it must be recognised that many impacts on the coast and inshore marine environments 
will result from extreme events affecting sea level such as storm surge. The magnitude 
of extreme events at any particular time or place is influenced by tidal conditions, 
storm severity, decadal-scale variability and regional mean sea level. While these 
phenomena are not formally additive, for a first approximation they can be summed as 
demonstrated by Lowe et al. (2001) for the North Sea. Analysis of the high quality 
Newlyn tide gauge record suggests this was a reasonable assumption for the 20th 
Century (Araujo and Pugh, 2008; Haigh et al., 2010). 

To date future changes in storm surges due to meteorological change have only been 
simulated at a small number of locations, with significant differences in the response 
depending on the region. While it is desirable to include changes in extreme water 
levels that result from changes in atmospheric storminess, the method of so doing will 
depend on the scope of the individual impact study.  Where time permits, employing 
both dynamic simulation of storm surges and statistical down-scaling approaches is the 
most comprehensive approach (e.g. Hunter, 2010).  

However, it is important to note that flood levels will increase and become more 
frequent as sea level rises even if storm intensity and behaviour remains unchanged 
(see Figure 9). The addition of current surge, tide (and wave) levels to projected 
changes in sea level can provide a first approximation for impact and adaptation 
assessments. In addition, for assessments in regions affected by storm surges it is 
advisable to at least consider the impacts of increases of 10-20% across the range of 
return periods as a sensitivity analysis (cf. DEFRA, 2006). A new assessment of coastal 
impacts from extreme sea levels will be available in November 2011 as part of the 
IPCC SREX22. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 http://www.ipcc.ch/pdf/supporting-material/SLW_WorkshopReport_kuala_lumpur.pdf 
22 IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX). 
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Table 5. Estimates of global-mean sea-level rise for the last decade of the 21st century (relative to 1980 to 
1999) based on the interpolation calculations shown in Section 4.7 and Figure 7, and combining sea 
level rise with scaled up ice discharge23 to create a low estimate for an extreme (H++) range for each 
SRES scenario. The upper estimate for the H++ range comes from assuming 2m at 2100. Note that these 
estimates are one interpretation of AR4 WG 1 and are not meant to be regarded as an update to the 
values reported there.  

 
Illustrative 
estimates 

SRES marker scenario 

B1 B2 A1B A1T A2 A1FI 

2025 

AR4 
interpolated 

Range (m) 
upper 0.12 0.11 0.13 0.14 0.09 0.10 

lower 0.06 0.06 0.07 0.08 0.07 0.07 

H++ Range (m) 
upper 0.25 0.25 0.25 0.25 0.25 0.25 

lower 0.09 0.10 0.11 0.11 0.11 0.13 

2055 

AR4 
interpolated Range (m) 

upper 0.23 0.23 0.26 0.27 0.23 0.26 

lower 0.12 0.10 0.12 0.15 0.13 0.15 

H++ Range (m) 
upper 0.75 0.75 0.75 0.75 0.75 0.75 

lower 0.22 0.25 0.27 0.26 0.29 0.33 

2085 

AR4 
interpolated 

Range (m) 
upper 0.34 0.38 0.42 0.40 0.43 0.50 

lower 0.16 0.15 0.17 0.22 0.19 0.23 

H++ Range (m) 
upper 1.52 1.52 1.52 1.52 1.52 1.52 

lower 0.39 0.45 0.51 0.48 0.53 0.63 

2095 

AR4 
interpolated Range (m) 

upper 0.38 0.43 0.48 0.45 0.51 0.59 

lower 0.18 0.16 0.19 0.24 0.21 0.26 

H++ Range (m) 
upper 1.83 1.83 1.83 1.83 1.83 1.83 

lower 0.46 0.53 0.60 0.57 0.63 0.75 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 Land ice sum comprises G&IC and ice sheets, including dynamics, but excludes the scaled-up ice sheet discharge 
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Figure 9: Time series of annual extreme sea levels at Southampton, UK - a rising trend is apparent and this is 
statistically similar to the rise in mean sea level (Haigh et al., 2010). 

6 Other climate change factors 

As already noted, sea-level rise is only one aspect of possible changes to coastal 
climate given global warming. Other aspects of coastal climate can also be expected to 
change with many adverse and some beneficial effects that will often interact with sea-
level rise (Nicholls et al., 2008a; 2008b – see Figure 2 and Table 6).  

To date, most impact assessments of coastal areas have simply considered sea-level 
rise only and assumed all other climate factors are constant. However, other, relevant, 
climate scenarios should be considered where appropriate. The goal of this section is 
to draw attention to some of the factors that might be considered, although quantitative 
scenarios are beyond the scope of this guidance. 

As indicated in Section 5.2, long-term variability in track location, intensity and 
frequency of coastal storms is of most concern, as this will change the occurrence of 
storm damage, including flooding and wave attack and has a high impact potential 
(e.g. Beersma et al., 2000; Church et al., 2001; von Storch and Woth, 2008).  

The possibility of more intense tropical cyclones is a particular concern: it has been 
argued that increases in tropical cyclone intensity over the past three decades are 
consistent with the observed changes in sea surface temperature (Emanuel, 1987; 
Webster et al., 2005), although this is controversial and being widely debated (Knutson 
et al., 2010). Changes in other storm characteristics are less certain and the number of 
tropical and extra-tropical storms might even reduce (Meehl et al., 2007). A new 
assessment of tropical and extra-tropical cyclones is also included in the forthcoming 
IPCC SREX23. 

Table 6:  Main climate drivers for coastal systems, their trends due to climate change, their main 
physical and ecosystem effects, and the source of scenarios. Symbols for trends: � increase; ? uncertain; 
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R regionally variable. Acronyms: GCM – General Circulation Models; RCM – Regional Climate Models. 
Adapted from Table 6.2 in Nicholls et al. (2007). 

Climate Driver 
(trend) 

Main physical and ecosystem effects on coastal systems 
Possible source 
of scenarios 

CO2 concentration 
(�) 

Increased CO2 fertilisation; decreased seawater pH (or 
‘ocean acidification’) negatively impacting coral reef and 
other pH sensitive organisms. 

Explicit scenario 
input to GCM 
simulations 

Sea surface 
temperature (SST) (�, 
R) 

Increased stratification/changed circulation; reduced 
incidence of sea ice at higher latitudes; increased coral 
bleaching and mortality; poleward species migration; 
increased algal blooms 

GCM, RCM 

Wave climate 
(?, R) 

Altered wave conditions, including swell; altered patterns 
of erosion and accretion; re-orientation of beach 
planform. 

GCM, RCM and 
ocean models 

Run-off  (R) 
Altered flood risk in coastal lowlands; altered water 
quality/salinity; altered fluvial sediment supply; altered 
circulation and nutrient supply. 

GCM, RCM and 
catchment 
models 

Given the combination of high concern and scientific uncertainty, this factor may be 
best considered by sensitivity analysis – or a “what if?” analysis of an adverse increase 
in storminess in addition to sea-level rise. However, it is also important to note that 
there is a high interannual and interdecadal variability of storm occurrence (e.g. WASA 
Group, 1998; Zhang et al., 2000), and it is difficult to discern long-term changes from 
natural variability in observations unless long time series (>50-60 years) are available. 

7 Concluding remarks 

Sea-level change is one of the observed consequences of global warming, and future 
sea-level rise is inevitable in a warming world, but the rates and geographical patterns 
of this rise remain uncertain (IPCC, 2007b). However, it is possible to develop useful 
scenarios of sea-level rise at any location, conduct an impact/vulnerability assessment 
and start to consider suitable adaptation policies/planning. The choice of specific 
scenarios and robustness of these results will vary according to the data available 
and/or the assumptions made for each sea-level change component, as well as the 
nature and lifetime of the potential assets at risk, so these should therefore always be 
made clear within the assessment report.   

Importantly, scenario development is only one step in a process, and the effort made 
towards scenario development should be proportional to the resources of the overall 
study and the question being posed. As noted in the text, scenarios are expected to 
develop and improve as part of the on-going adaptation assessment process; this 
guidance is expected to continue to evolve with our improving scientific 
understanding. Similarly, the understanding of sea level rise will improve, and the 
demand for scenarios of sea-level rise is one factor that will facilitate this improvement.  

Lastly, given the large uncertainties in future conditions, there is some risk that sea-
level rise assumed for a selected adaptation measures may be exceeded. Hence, in 
addition to scenario development, ongoing monitoring of actual sea-level rise as well 
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as an appreciation of developments in understanding of future sea-level rise in the 
scientific literature are essential so that additional measures can be implemented in a 
timely manner, if required. 
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Appendices 

Appendix 1. AR4 Source data 

Table A 1: The IPCC projected global-average sea-level rise and its components under the six SRES marker 
scenarios during the 21st century.  For each component, the upper row shows the 5 to 95% range (m) of the 
rise in sea level between 1980 to 1999 and 2090 to 2099; the lower row shows the range of the rate of sea-
level rise (mm/yr) during 2090 to 2099. (Source: Table 10.7 in Meehl et al., 2007). 

Sea-level component 
SRES marker scenarios 

B1 B2 A1B A1T A2 A1FI 

Thermal 
expansion 

m 0.10 0.24 0.12 0.28 0.13 0.32 0.12 0.30 0.14 0.35 0.17 0.41 

mm yr-1 1.1 2.6 1.6 4.0 1.7 4.2 1.3 3.2 2.6 6.3 2.8 6.8 

Glaciers and 
ice caps 

m 0.07 0.14 0.07 0.15 0.08 0.15 0.08 0.15 0.08 0.16 0.08 0.17 

mm yr-1 0.5 1.3 0.5 1.5 0.6 1.6 0.5 1.4 0.6 1.9 0.7 2.0 

Greenland 
Ice Sheet 
SMB30 

m 0.01 0.05 0.01 0.06 0.01 0.08 0.01 0.07 0.01 0.08 0.02 0.12 

mm yr-1 0.2 1.0 0.2 1.5 0.3 1.9 0.2 1.5 0.3 2.8 0.4 3.9 

Antarctic Ice 
Sheet SMB 

m -0.10 -0.02 -0.11 -0.02 -0.12 -0.02 -0.12 -0.02 -0.12 -0.03 -0.14 -0.03 

mm yr-1 -1.4 -0.3 -1.7 -0.3 -1.9 -0.4 -1.7 -0.3 -2.3 -0.4 -2.7 -0.5 

Land ice 
sum31 

m 0.04 0.18 0.04 0.19 0.04 0.20 0.04 0.20 0.04 0.20 0.04 0.23 

mm yr-1 0.0 1.8 -0.1 2.2 -0.2 2.5 -0.1 2.1 -0.4 3.2 -0.8 4.0 

Sea-level 
rise32 

m 0.18 0.38 0.20 0.43 0.21 0.48 0.20 0.45 0.23 0.51 0.26 0.59 

mm yr-1 1.5 3.9 2.1 5.6 2.1 6.0 1.7 4.7 3.0 8.5 3.0 9.7 

Scaled-up ice 
sheet 
discharge 

m 0.00 0.09 0.00 0.11 -0.01 0.13 -0.01 0.13 -0.01 0.13 -0.01 0.17 

mm yr-1 0.0 1.7 0.0 2.3 0.0 2.6 0.0 2.3 -0.1 3.2 -0.1 3.9 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30 Surface Mass Balance 
31 Land ice sum comprises glaciers and ice caps and ice sheets, including dynamics, but excludes the scaled-up ice sheet 
discharge. 
32 Sea-level rise comprises thermal expansion and the land ice sum. Note that the lower/upper bound for sea-level rise is 
larger/smaller than the total of the lower/upper bounds of the contributions, since the uncertainties of the contributions are 
largely independent 
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Appendix 2. The SimCLIM sea-level scenario generator 

The relative change in sea level at specific locations is attributable to factors at global, 
regional and local levels (Section 3). To enable robust coastal vulnerability and adaptation 
assessment, sea-level change scenarios should integrate these factors in an internally 
consistent fashion. One software tool that accomplishes this task is the sea-level scenario 
generator contained within SimCLIM, an integrated modelling system for assessing impacts 
and adaptation resulting from climate variability and change (Warrick, 2009; Warrick et al., 
2005).  The data and methods used by the sea-level scenario generator have been updated to 
be consistent with the AR4 Assessment, as described below. 

The user interface of the SimCLIM sea-level scenario generator is shown in Figure A 1. The overall method 
features a separate consideration of three components: (1) global-mean sea-level projections; (2) regional 
departures from the global-mean value due largely to thermal expansion effects; and (3) local non-climate-
change trends in relative sea level due largely to local land movements (e.g. Section 3.2). The system is 
designed to allow the user to obtain high, mid and low projections for sites by selecting amongst a range of 
uncertainty for each.  

For global-mean projections, the system contains high, mid and low projections for the six 
SRES marker scenarios (AIB, A1FI, A1T, A2, B1, B2) which consistent with the values given 
in IPCC AR4. SimCLIM also has an option for scaling up the projections to take account of 
uncertainties in ice melt contributions due to ice sheet dynamics (in accordance with Meehl 
et al., 2007, Table 10.7; see Appendix 1). 

For any user-selected location, the global-mean projections are adjusted by the regional 
variations in sea-level change, which are due largely to differences in thermal expansion as 
produced by AOGCMs. SimCLIM uses pattern-scaling techniques (see Section 4.3.1.2) in 
which the spatial patterns of thermal expansion from an AOGCM for a future time period are 
“normalised” by dividing by the global-mean thermal expansion for the same period. For any 
given location, therefore, there is a ratio indicating whether the local thermal expansion will 
be greater than, equal to, or less than the global-mean value and by how much (a sample of 
normalised patterns of these ratios is shown in Figure A 2). SimCLIM contains thirteen 
normalised patterns from AOGCM runs carried out for AR4. These AOGCM patterns can be 
used individually, or in combination as a multi-model ensemble with a median value and 
user-defined percentile ranges.  In order to obtain the regionally-adjusted projection for a 
selected location and future date (between 1990 and 2100), the thermal expansion 
component of the user-selected global-mean sea-level change projection is scaled by the 
selected AOGCM normalised pattern.  This component is then re-combined with the ice-
melt portion of the projection. 

For the local land movement component, the user can input a value for the local sea-level 
trend. If the trend in relative sea-level change from vertical land movement is known, the 
user can simply enter the value (in mm/yr) and this is added to the future projection.  Often, 
however, only the total undifferentiated trend is known (as estimated, for example, from tide-
gauge data). As discussed in Section 4.3.3, this total trend cannot simply be added onto the 
future projection because it would run the risk of “double-counting” the effect that global 
warming has already had on observed sea-level rise and would therefore inflate the future 
projected rise. 
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Figure A 1: The SimCLIM sea-level generator. In SimCLIM, global-mean, regional and local components are 
combined to produce location-specific projections of future change. The panel above shows the user interface, 
a selected AOGCM normalised pattern, and sample output of high, mid and low projections of sea-level rise.  

 

 
Figure A 2:  Normalised sea-level changes (ratio of local sea-level change to the global average value; cm/cm) 
for thermal expansion as simulated by nine different AOGCMs, as developed for, and incorporated into, 
SimCLIM (AOGCM data provided by the Program for Climate Model Diagnosis and Intercomparison – PCMDI). 

To avoid such double-counting, SimCLIM can estimate the non-climate-change-related 
component of the trend (OBSncc). This component is estimated by adjusting the observed 
global-mean trend (1.8 mm/yr) by the location-specific thermal expansion effect, based on 
the specific AOGCM selected by the user for future projections (in order to maintain 
consistency between observed trend and the future projection), as follows:  

])0.1([ gglncc OBSTEOBSTEGCMOBSOBS ×−+××−=     Equation 3 
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Where: 

nccOBS is the non-climate-change local trend in sea-level (mm/yr); 

lOBS  is the local observed trend, as typically derived from tide gauge data (mm/yr);              

gOBS is the estimated observed global-mean sea-level trend (1.8mm/yr); 

GCM is the value of the GCM-specific normalised value of sea-level change, relating 

to thermal expansion only; 

TE  is the estimated proportion of observed global-mean sea-level rise due to thermal 
expansion.                         

OBSncc, is often the result of vertical land movement, and is added to the regional pattern-
scaled projection of sea-level change.   

One of the distinct advantages of using automated methods such as the SimCLIM generator is 
that it allows rapid generation of place-based sea level scenarios which account for 
uncertainties within the bounds of reasonable combinations with emission scenarios and 
model parameters.  For example, Figure 6 in the text of this Guidance Document shows sea-
level change projections for Buenos Aires and Stockholm for a multi-model ensemble of 
AOGCMS, model parameters and emission scenarios.  
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Appendix 3. Examples of sea-level scenarios used in impact assessments 

This Appendix details a number of case studies of sea-level rise scenario development for 
impact assessments. A range of methods are presented to illustrate the range of methods 
described in Table 4 from the simplest to the most comprehensive. 

A3.1. Northeast Atlantic Ocean (Katsman et al., 2008) 

This study used the most up-to-date data and climate models to determine sea-level rise in 
the northeast Atlantic Ocean for 2050 and 2100. The scenarios include changes in ocean 
density (global thermal expansion and local steric changes related to changing ocean 
dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes 
in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage 
contributions). Given the current understanding of the various contributions and the 
uncertainty in emissions, best estimates of twenty-first century sea level rise in the northeast 
Atlantic Ocean have been produced,. For 2100, a local rise of 30 to 55 cm and 40 to 80 cm 
are estimated for moderate (2oC) and large (4oC) rises in global mean atmospheric 
temperature, respectively. Note that uplift/subsidence is not considered. 

A3.2. Morocco (Snoussi et al., 2008) 

The eastern part of the Mediterranean coast of Morocco is physically and socio-
economically vulnerable to accelerated sea-level rise, due to its low topography and its high 
ecological and touristic value.  As there are no long term measurements available, this study 
assessed potential land loss by inundation based on empirical approaches using a minimum 
inundation level of 2 m and a maximum inundation level of 7 m; where IPCC scenarios for 
future global sea-level rise range from 200 to 860 mm, with a ‘best estimate’ of 490 mm 
(IS92a emissions scenario - Warrick et al., 1996).  The results indicate that 24% and 59% of 
the area will be lost by flooding at minimum and maximum inundation levels, respectively, 
of which residential and recreational areas, agricultural land, and the natural ecosystem are 
the most exposed. The conclusion of this study's results draws attention to the importance of 
increasing awareness of decision-makers and planners to the potential future impacts of sea-
level rise in an area where no sea-level data for the development of specific scenarios exists. 
The estimates for future sea-level rise were derived to represent ‘worst case’ and ‘sustainable’ 
scenarios.  

A3.3. Senegal (Dennis et al., 1995) 

This case illustrates an assessment where little hard data exists on sea level but the results 
can still provide valuable information.  
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Figure A 3: Historical sea level record at Dakar, Senegal (data source PSMSL) 

Senegal has a high proportion of its population and economic activity located in the coastal 
zone and is therefore considered vulnerable to sea-level rise; but there is lack of data (Dennis 
et al., 1995) and the methods used illustrate the minimum requirements in Table 3.  

The historical record of observed sea level at Dakar is shown in Figure A 3. The long-term 
linear trend found by Dennis et al.  (1995) using the data between 1943-1965 was 1.4mm/yr, 
and the addition of data from 1997-2002 gives a mean rise of 1.5mm/yr, confirming the 
earlier trend was reasonable. Hence, any uplift or subsidence can therefore be assumed to be 
minimal and there does not appear to be any potential for human-induced subsidence, 
except possibly in the Senegal River delta. Therefore, it can be assumed that these 
conclusions are valid across the whole country and climate-induced sea-level rise scenarios 
can be directly applied to Senegal.  Dennis et al.  (1995) applied scenarios of 0.2 m, 0.5 m, 
1.0 m and 2.0 m.  

A3.4. Global ports (Nicholls et al., 2008a) 

This global screening study made a first estimate of the exposure of the world’s large port 
cities33  to coastal flooding due to storm surge (and damage due to high winds). This 
assessment also investigated how climate change is likely to change each port city’s 
exposure to coastal flooding by the 2070s, alongside subsidence and population growth and 
urbanisation. The work explicitly considered the potential for large changes as a bounding 
case and noted some of the large projected rises published since the AR4. Hence, the 
analysis was more focused on the extreme range than the AR4 range. Future sea-level 
scenarios were developed by combining data from DIVA (vertical land movement), with a 
global sea-level scenario of 0.5 m by the 2070s and a human-induced subsidence scenario 
for appropriate port cities – essentially those wholly or partly in major deltas.  An increase in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
33 Those with more than one million people in 2005 – there were 136 such cities. 
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storm surge height was also included where considered possible by Meehl et al. (2007) (see 
Table A 2.   

Table A 2: Data used for the global assessment of exposure to climate change for port cities in the 2070s. 

  Sea-level change 

Relative sea-
level 
component 

 

 

∆SLG Uniform global rate (0.5 m) assumed 

∆SLRM N/A 

∆SLVLM VLMN Variable based on Peltier (2000) 

VLMH Uniform amount (0.5 m) applied to port 
cities in deltaic settings 

Storm surge  Increased by 10% in appropriate locations 

A3.5. Guidance  for adaptation to coastal flooding due to sea-level rise (DCLG, 2006; 
DEFRA, 2006)  

New coastal defences in England and Wales must consider the implications of accelerated 
sea-level rise and include this in engineering design, if appropriate. This is an extension of 
existing UK practice which was to include observed relative sea-level rise trends as 
measured with long-term tide gauges or other observational methods in engineering design.34 
The initial guidance was based on a 50 year time span and regional constant relative sea-
level rise scenarios from 4 to 6 mm/yr, depending on the vertical land movements (DEFRA, 
2000). The scientific basis was derived from the median scenario in the IPCC First 
Assessment report (Warrick and Orlemanns, 1990). This has been updated to a 100 year time 
horizon and is also being considered in coastal planning. The scenario is derived from the 
upper curve of the IPCC Third Assessment Report (Church et al., 2001), and as such is taking 
a more precautionary view than the earlier guidance. The IPCC scenario ended in 2100, 
while scenarios are required for the early 22nd Century to address the 100 year timescale. 
Hence the IPCC curve was extrapolated from 2100 to 2115 and the allowance is time 
dependent rising to 13-15 mm/yr from 2085 to 2115. (Note that this Guidance is under 
review and revised guidance is expected to be released in 2011). 

A3.6. TE2100, London, UK – the H++ scenario (Lowe et al., 2009) 

London and the Thames Estuary have always been subject to flood risk and, due to the high 
value of property, London currently enjoys a high standard of protection (generally the 1000 
year return level estimated for the year 2030). The Thames Estuary 2100 project (TE210035) 
was established in 2002 with the aim of developing a long-term tidal flood risk management 
plan. Recognising that the estuary would continue to change, this plan would need to be 
adaptable and take into account factors such as changing sea levels and extreme water 
heights. The TE2100 project developed time series of quantitative sea-level and surge 
scenarios for this century in association with UK Climate Projections (UKCP)36 using the 
projected uncertainty range of global sea level from the IPCC AR4 of the IPCC downscaled 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
34 For instance, the Thames Barrier allowed 50 cm additional freeboard for rising extreme water levels based on trends in 
historic measurements at London Bridge (Gilbert and Horner, 1984), long before there were any concerns about human-
induced global warming. 
35 http://www.environment-agency.gov.uk/homeandleisure/floods/104695.aspx  
36 http://ukclimateprojections.defra.gov.uk/ 
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for the UK. These showed that sea-level rise in the Thames over the next century due to 
thermal expansion of the oceans, melting glaciers and polar ice is likely to be between 20cm 
and 90cm by 2100. The time series allowed the detection of thresholds of change which 
would require a response option to be implemented. In this way the timing and design of 
future flood defences, resilience of new and existing development against future water levels 
and the effectiveness of flood warning systems and emergency responses could all be 
determined. 

During the project it was also recognised that current models does not include all of the 
processes that govern future sea-level rise (see IPCC, 2007b) with many uncertainties 
remaining over the contribution of polar ice melt to sea levels. Consequently an extreme, if 
highly unlikely during the 21st century, sea-level scenario was also included. This H++ 
scenario range provided an extreme but physically plausible range of change by 2100 (i.e. 
no time series was specified) which allowed investigation of contingency planning and the 
limits of adaptation. The H++ scenario is based on faster rates of melt for ice sheets which, 
while not currently predictable, can be estimated based on observations of the past and 
current understanding of ice sheet dynamics. The lower value for the H++ range was based 
on estimates reported in AR4 which recognised that accelerated ice flow with global mean 
surface temperature could produce up to an additional 17 cm of sea-level rise (for the High 
emissions scenario). This was added to the maximum sea-level rise previously calculated for 
London giving a lower estimate for the H++ range of 0.93 m. The upper estimate for the 
range was based on post AR4 publications which provided alternative, increased, estimates 
of ice melt (e.g. Pfeffer et al., 2008). Combined with rates of thermal expansion and vertical 
land movement, this estimate of ice melt produced a worst case estimate at approximately 
1.9 m.  The H++ range was therefore between 0.93 and 1.9 m for London. 



 

42 

Appendix 4. Evolution of the IPCC socio-economic and emissions scenarios 

Early IPCC assessment reports and some climate modelling use the IS92a global emissions 
scenario of the Intergovernmental Panel on Climate Change (Alcamo et al., 1995; Leggett et 
al., 1992). This scenario is often referred to as a "business-as-usual" scenario representing a 
plausible course for global emissions under a public policy that gives no consideration to 
climate change concerns. This scenario is not now widely used having been superseded by 
the IPCC SRES37 based on a series of global socio-economic scenarios (Naki�enovi� et al., 
2000).  

Each of the SRES scenarios represents a specific quantitative interpretation of one of four 
storylines. Each storyline represents different demographic, social, economic, technological, 
and environmental developments, which attempted to encompass the current range of 
uncertainties of future GHG emissions. A total of six scenario groups cover wide and 
overlapping emission ranges (Naki�enovi� et al., 2000).  Ideally, all scenarios should be 
included in any impact assessment.  However, it is important to note that, as evident in both 
the TAR (Church et al., 2001) and AR4 (IPCC, 2007a), and for sea-level rise from 1990 to 
2100, the uncertainty in model (climate and ice melt model) tends to make a greater 
contribution to the variation in sea level than the uncertainty from the choice of emissions 
scenario. 

In addition to driving emission scenarios, socio-economic scenarios can have other roles 
within impact and adaptation assessment (see Figure 2 and Carter et al., 2007). The socio-
economic assumptions used within such assessments ideally should be consistent with those 
used to drive the emissions underlying the climate change scenarios being employed (Arnell 
et al., 2004; Nicholls et al., 2008b), although the definition of consistency depends on the 
geographic scale and scope of the study. This consistency allows exploration of the relative 
effects of climate versus socio-economic changes on impacts and responses to them, as 
illustrated for a detailed assessment of North-East Norfolk, UK by Dawson et al. (2007) and 
an analysis of global port cities by Nicholls et al. (2008a). Methods to describe the level of 
development and adaptive capacity in coastal areas, are outlined by Nicholls et al. (Nicholls 
et al., 2008a; 2008b), and discussed in the context of human-induced subsidence in Section 
4.3.3.   

To make these scenarios more applicable at regional and local scales, it is possible to 
downscale the global IPCC SRES scenarios as illustrated in Gaffin et al. (2004), Solecki and 
Oliveri (2004), Grübler et al. (2007), Stendel et al. (2007), and van Vuuren et al. (2007; 
2010). Continued development of emissions scenarios is occurring, including the 
development of sea-level scenarios where greenhouse gas emissions are stabilised (Moss et 
al., 2010). The current scenarios will therefore almost certainly be superseded by the time of 
the next (5th) IPCC assessment. However, the issues presented in this guidance document will 
remain, and the approaches presented here are generic and will remain useful.   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
37 Special Report on Emissions Scenarios 
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Appendix 5. Glossary  

altimetry Radar technique that measures global elevation of sea, land or ice surfaces 
compared to the centre of the earth 

AG Absolute Gravimetry 

AOGCM(s) Atmosphere-Ocean-Coupled General Circulation Model(s) 

AR4 IPCC Fourth Assessment Report (2007) 

downscaling Any process by which large scale data are made applicable for use at smaller, 
more detailed scales  

EMICs Earth System Models of Intermediate Complexity 

ENSO El Niño-Southern Oscillation (commonly referred to as El Niño) is a large scale 
ocean-atmosphere oscillation (often with a 5 year timescale) associated with 
strong fluctuations in ocean currents and surface temperatures, primarily in 
equatorial regions within the Pacific Basin. 

eustatic Related to changes in the amount of water in the oceans 

GCM General Circulation Model 

GIA Glacial-Isostatic Adjustment (this has also been termed post-glacial rebound). The 
ongoing adjustment of land levels to the removal of the large ice sheets at the end 
of the last Ice Age. Beneath the sites of former ice sheets this is a vertical rebound 
(or sea-level fall), but both subsidence and slower uplift occur in the far field. 

GPS Global Positioning System.  

Greenhouse gases Trace gases such as carbon dioxide that absorb heat that is radiated from the 
surface of the earth and the atmosphere  

HadCM3 Climate model developed by the Met Office Hadley Centre for Climate Prediction 
and Research 

Hydrological Cycle The continual flow of water between land, sea, and atmosphere, through 
evaporation, condensation, and precipitation. 

Ice cap A dome-shaped cover of perennial ice and snow, covering the summit area of a 
mountain mass so that no peaks emerge through it, or covering a flat landmass 
such as an arctic island; spreading outwards in all directions due to its own 
weight; and having an area of less than 50,000 square kilometres (Glacial geology 
glossary38). 

Ice sheet A glacier of considerable thickness and more than 50,000 square kilometres in 
area, forming a continuous cover of snow and ice over a land surface, spreading 
outward in all directions and not confined by the underlying topography. Ice 
sheets are now confined to polar regions (in Greenland and Antarctica), but during 
the Pleistocene Epoch they covered large parts of North America and northern 
Europe (Glacial geology glossary) 

LIDAR (Light Detection And Ranging) an optical remote sensing technology used to 
measure topography. 

meteo-oceanographic  Interaction between meteorological and oceanographic processes 

NAO North Atlantic Oscillation is a climatic phenomenon in the North Atlantic Ocean 
due to fluctuations in the atmospheric pressure difference between the Icelandic 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
38 http://www.homepage.montana.edu/~geol445/hyperglac/glossary.htm 
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low and the Azores high. It is correlated with the strength and direction of westerly 
winds and storm tracks across the North Atlantic. 

Neo-tectonics The study of the motions and deformations of the Earth's crust (geological and 
geomorphological processes) which are current or recent in geologic time 

OECD Organisation for Economic Co-operation and Development: www.oecd.org  

PSI Persistent Scatterer Interferometry 

RCM Regional Climate Model 

rheology The study of the deformation and flow of matter under the influence of an applied 
stress 

SCM Simple Climate Model 

SD Statistical Downscaling: 

SRES IPCC Special Report on Emissions Scenarios:  

TAR IPCC Third Assessment Report (2001) 

Thermal expansion Expanson of the water volume of the oceans due to an increase in temperature 

UD/EB model Upwelling-Diffusion Energy-Balance model 

WAIS West Antarctic Ice Sheet: is the portion of the continental ice sheet that covers 
West (or Lesser) Antarctica.  
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Appendix 6. Useful Web Pages 

A6.1. Data sources 

DIVA model website: http://www.diva-model.net 

Met Office Hadley Centre: http://www.metoffice.gov.uk/research/hadleycentre/ 

IPCC Data Distribution Centre: http://www.ipcc-data.org/ 

National Climatic Data Centre: http://www.ncdc.noaa.gov/oa/climate/globalextremes.html 

National Environmental Satellite, Data and Information Service: http://www.nesdis.noaa.gov/ 

National Tidal Centre: http://www.bom.gov.au/oceanography/projects/ntc/ntc.shtml 

NOAA Topex/Poseidon analyses:  http://ibis.grdl.noaa.gov/SAT/hist/index.html 

Program for Climate Model Diagnosis and Intercomparison: http://www-pcmdi.llnl.gov/ 

Permanent Service for Sea Level:  http://www.pol.ac.uk/psmsl/ 

UK Climate Impacts Programme: http://www.ukcip.org.uk/ 

UK Climate Projections: http://ukclimateprojections.defra.gov.uk/ 

Peltier GIA datasets:  http://www.psmsl.org/train_and_info/geo_signals/gia/peltier/  

A6.2. General information 

Commonwealth Scientific and Industrial Research Organisation (CSIRO): 
http://www.cmar.csiro.au/ 

SURVAS: http://www.survas.mdx.ac.uk/ 

Tyndall Centre for Climate Change Research: http://www.tyndall.ac.uk/ 

United Nations Framework Convention on Climate Change:   
http://unfccc.int/adaptation/nairobi_workprogramme/compendium_on_methods_tools/items/
2674.php 

US Department of Transport: Centre for Climate Change and Environmental Forecasting: 
http://climate.dot.gov/about.html 
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